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We describe a hybrid quantum mechanical/molecular mechanical (QM/MM) method implemented in the context
of floating-occupation molecular orbital semiempirical configuration interaction wave functions. The QM/
MM approximation is compared to a fully QM treatment, emphasizing its accuracy with respect to features
important to photochemical mechanisms such as conical intersection geometries and topography. The
methodology we describe allows the location and characterization of solution-phase conical intersections for
the first time. This is demonstrated explicitly by application to several biologically relevant chromophores
solvated in clusters of up to 150 water molecules. The effect of solvation on the photochemical energy
landscapes of these molecules is investigated, and we note a tendency for conical intersections to become
absolute excited state minima upon hydration.

I. Introduction

The modern understanding of photochemistry revolves around
the presence of conical intersections, points (or more generally
hypersurfaces) of true degeneracy between different electronic
states.1-3 Electronic structure theory studies have confirmed the
existence of energetically accessible intersections in many
photochemical reactions,4,5 and gas-phase dynamical investiga-
tions are buttressing the idea that these intersections play a key
role in photochemical mechanisms.6-12 However, detailed
studies of the role of conical intersections in condensed phases
have been quite scarce, in large part because of the difficulty
of obtaining accurate ground and excited state potential energy
surfaces for large systems.

One possible avenue toward including condensed phase
environments in photochemical simulations is the use of hybrid
quantum mechanics/molecular mechanics (QM/MM) methods.
In QM/MM methods as applied to solutions, one generally treats
a solute molecule with some form of electronic structure theory
and uses a cruder molecular mechanics force field description
for the solvent. The choice of electronic structure theory method
used is generally dictated by practical considerations of com-
putational cost and can be either semiempirical or ab initio. The
first QM/MM method was developed in the context of proteins
by Warshel and Levitt,13 with refinements by many subsequent
workers.14-25

In most cases, applications of QM/MM methods have been
restricted to reactions occurring exclusively on the ground
electronic state. However, there have been attempts to also treat
electronically excited states, primarily to determine solvato-
chromic shifts.26-38 Reasonable results are obtained for these
shifts, but the performance of these methods with respect to
excited state potential energysurfaceshas been largely unex-
plored. This is primarily because it is difficult to get a globally

accurate description of the QM region with practically applicable
electronic structure methods. In particular, within the context
of semiempirical and conventional ab initio quantum chemistry
methods, there is ample evidence that a multireference descrip-
tion is mandatory for excited state potential energy surfaces.
This considerably increases the computational cost compared
to ground state potential energy surfaces or vertical excitation
energies of optically allowed states. It is not clear to what extent
such considerations also apply to recently developed density
functional theory (DFT) methods such as time-dependent DFT.39

We use a semiempirical analogue of the state-averaged complete
active space (CASSCF) method40,41 for the QM region in this
paper. Importantly, this allows us to describe conical intersection
regions, where a balanced description of the electronic wave
functionsmusthave multireference character.

Olivucci and co-workers showed that steric effects of bulky
functional groups, such ast-butyl, could be included in the
calculation of excited-state potential energy surfaces with a
simple QM/MM-like model.42 They used this method to
investigate conical intersection geometries and relaxation paths
of tert-butyl substituted butadienes in the gas phase. This was
the first (and until now the only) example of the characterization
of conical intersections within a hybrid QM/MM model, but
the complete neglect of an electrostatic QM/MM interaction
limited it to isolated molecules.

In this paper, we locate and characterize, for the first time,
conical intersections in models of condensed phase systems.
Both static and dynamic tuning of conical intersections, and
hence photochemical mechanisms, are expected in condensed
phase photochemistry. In this work, we only consider static
effects of the solvent on the geometries, energetics, and
topographies of conical intersections. The influence of dynamic
tuning is also very interesting, but we leave the study of these
effects to future work. Nevertheless, it is worth noting that the
essential machinery required to carry out “on-the-fly” QM/MM
nonadiabatic multiple spawning9,43 or surface-hopping44,45 dy-
namics is presented here.
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II. Theory and Computational Method

As in the usual QM/MM methodology,13-15 we partition the
Hamiltonian of the system as follows:

HereĤQM is the usual molecular electrostatic Hamiltonian,ĤMM

describes the intersolvent and intrasolvent force field, whereas
ĤQM/MM couples the two subsystems. In the model we have
adopted, the QM/MM interaction consists of two terms. First,
there is an electrostatic interaction where the QM part of the
molecule sees MM region as a collection of point charges
centered on the MM atoms. The MM charges are the same ones
which appear in the MM force field. Second, to introduce
quantum dispersion and repulsion, van der Waals terms are also
included. Thus, in atomic units

where i and R are QM indices for electrons and nuclei,
respectively,m represents MM atoms,Z are nuclear (QM) or
effective atomic (MM) charges, andε and σ are the van der
Waals parameters. As usual, the QM atoms must be classified
according to the MM model chosen in order to define theεRm

andσRm parameters for the QM/MM interaction.
The self-consistent field (SCF) equations are solved including

the QM/MM monoelectronic term in the Fock matrix (first term
on the right-hand side in eq 2). Thus, the molecular orbitals are
obtained in the field produced by the charge distribution of the
solvent. The orbitals are determined using the floating occupa-
tion molecular orbital (FOMO) SCF procedure.46 This technique
allows partial occupation and therefore optimization of all of
the orbitals included in an energy window around the Fermi
level. The occupation numbers change with molecular geometry,
ensuring orbital degeneracy when necessary, such as during
bond breaking. In contrast to complete active space self-
consistent field (CASSCF) methods,41 the FOMO approach does
not require a multiconfigurational wave function ansatz to
populate virtual orbitals and constitutes a very effective and
fast computational technique. As a consequence of the partial
optimization of the more significant virtual orbitals, the accuracy
of configuration interaction procedures including a limited subset
of the virtual orbitals is significantly improved, much like in
the improved virtual orbital and similar procedures.47,48 The
accuracy of the FOMO semiempirical approach in the context
of photochemical applications has been investigated by us
recently.49 We found that conical intersection geometries were
well-predicted in comparison to CASSCF ab initio calculations.

The CI energy of the electronic stateK can be written as

where EMM is the energy of the molecular mechanical sub-
system,PK is the density matrix which should be determined
in the MM field, andECVW,QM/MM is the point-charge and vdW
part of the QM/MM interaction energy, which does not depend
on the wave function in the QM region (the second and third
terms on the right-hand side in eq 2). Note that the first of the

two terms arising from the QM/MM interaction is state specific.
As a consequence, each electronic state is subject to a different
interaction with the surrounding environment, changing its
energy accordingly.

Efficient algorithms for conical intersection searches and
molecular dynamics using this method will require analytic
derivatives of the QM/MM CI energy. It has already been shown
how analytical derivatives for CI energies using FOMO-SCF
orbitals can be computed,46 and this has been further extended
to QM/MM systems.50 Here, we present the technique in more
detail. The analytical derivative is obtained from the Hellmann-
Feynmann theorem, as applied in the semiempirical context by
Dewar and Liotard:51

whereQx indicates the coordinate of a generic atom, belonging
to either of the QM or MM subsystems. TheCK vectors denote
the CI eigenvectors and theH matrixes represent the corre-
sponding Hamiltonian operator in the basis of the selected Slater
determinants. The first term is the usual gradient of the CI
energy already described elsewhere.46 The second term takes
into account the QM/MM interaction matrix elements, involving
the one-electron integrals

wherem indexes MM atoms. In the spirit of the NDDO (neglect
of diatomic differential overlap) approximation,52,53 the K
integrals are assumed to vanish unless both atomic basis
functions reside on the same atom. Following the standard
semiempirical treatment of integrals,K integrals where both
basis functions reside on the same atom are evaluated using a
multipole representation of theøµøν charge distribution and
neglecting charge penetration corrections.54 TheseK integrals
present no conceptual difficulties beyond the usual one-center,
one-electron integrals. In practice, the first and second terms
of eq 4 are computed simultaneously.

Now we can define the gradient difference vector

and the nonadiabatic coupling vector

In the case of the nonadiabatic coupling vector, the elements
corresponding to MM coordinates are set to zero. This ap-
proximation is not strictly necessary but, as will be shown below,
is quite a good approximation when the QM/MM decomposition
is well-chosen. The nonadiabatic coupling vector is built in the
manner already presented in our previous paper.49

Once these two vectors are defined, we are able to optimize
minimal energy conical intersections (MECIs) using the algo-
rithm introduced by Bearpark et al.55 as modified and imple-
mented previously in the semiempirical context.49 Details will
not be repeated here, but the procedure can be summarized by
stating that the MECI is found by following the direction of a

ĤTOT ) ĤQM + ĤQM/MM + ĤMM (1)
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vector which is a combination of the gradient of the upper
electronic state, projected onto the branching plane defined by
gbKL and hBKL, and the gradient difference vector, weighted by
the energy gap between the states.

In the following, we present the results of calculations
performed with a development version of the MOPAC code54

in which the FOMO procedure, the driver for the optimization
of conical intersections, and the QM/MM Hamiltonian for CI
wave functions were implemented. In the remainder of this
paper, unless otherwise specified, the QM region uses the
semiempirical FOMO-CI method with the AM1 Hamiltonian56

and the MM region uses the OPLS-UA force field57 with the
SPC representation of water.58

III. Applications

We now apply the QM/MM methodology to a number of
molecules which are interesting in the context of condensed-
phase photochemistry. All of the chosen examples are biologi-
cally important chromophores which normally function in a
protein environment. Ultimately, a QM/MM method of the type
described here, augmented with a scheme for dealing with QM/
MM boundaries across covalent bonds,13,15-17,20,59could be used
to investigate photochemistry in the native protein environment,
and work along these lines is currently in progress. However,
in the present paper, we only compare features of the expected
photochemistry in gas and solution phases.

It should be understood that, despite the greatly improved
description of excited electronic states (compared to standard
semiempirical methods) which comes from the FOMO-CASCI
approach, the semiempirical method being used for the QM
region has inherent limitations. We have previously character-
ized these for some of the very molecules investigated here.49

In particular, the relative energetics of conical intersections
predicted with standard parametrizations is often incorrect. At
the same time, the FOMO-CASCI method with standard
semiempirical parametrizations is often able to predict the
qualitative geometries as well as the character of the electronic
states involved in minimal energy conical intersections. Thus,
the conclusions we make in this paper regarding the effect of
solvation on conical intersections in these molecules are
expected to be valid, but it would be pointless to do detailed
dynamical simulations without reparametrization. Therefore, in
this paper, we focus attention primarily on the changes in the
ground and excited-state PESs in the neighborhood of the
important conical intersections.

1. Static Solvent Effects on Intersection Energetics.Our
first example isp-hydroxybenzylidene-imidazolidinone, the
chromophore in green fluorescent protein (GFP). The GFP
chromophore (autocatalytically formed by posttranslational
modification from a Ser-Tyr-Gly sequence in the protein)
exhibits significant fluorescence in the protein environment but
is not fluorescent in liquid solution at room temperature.60 It
has been suggested61 that the nonradiative decay observed in
solution may be a consequence of conical intersections associ-
ated with torsion, and we have previously confirmed the
existence of such intersections in the gas phase using both
semiempirical FOMO-CI and ab initio methods.49

We have placed the GFP chromophore in a microsolvated
environment, with 51 surrounding water molecules. The elec-
tronic structure treatment includes all excitations of 12 electrons
in 8 active orbitals, FOMO-CASCI(12/8). An energy width
of 0.2 hartree is used in the FOMO-SCF procedure. The
geometry was constructed by placing water molecules in
favorable hydrogen bonding arrangements around the polar

groups of the chromophore, followed by energy minimization.
This procedure is not expected to generate the global minimum
but rather just a representative of the geometries that might be
sampled in such a cluster. We follow the same procedure
throughout this paper, noting that a detailed study of one
chromophore would require accounting of the statistical nature
of either a microsolvated cluster or bulk solution.

The GFP chromophore and one of the surrounding water
molecules (closest to the OH group of the phenol ring) were
treated with the QM method and the remaining 50 water
molecules with the MM method. The QM treatment of one water
molecule was motivated by suggestions that the phenolic proton
is involved in proton transfer after photoexcitation.60 We have
computed excitation energies at the S0 local minimum, searched
for minima on S1, and located minimal energy conical intersec-
tions (MECIs) corresponding to those we have previously
characterized49 in the isolated chromophore. The resulting
energy landscape for the microsolvated cluster is compared with
that for the isolated chromophore in Figure 1 (see also Table
1). In the gas phase, the chromophore has a well-defined local
minimum on S1 corresponding to twisting about the bond

Figure 1. Energy level diagram of some important points on the S0

and S1 potential energy surfaces of the isolated (blue) and microsolvated
(red) GFP chromophore. In both cases, the chromophore is treated with
QM. One water molecule (H-bonded to the phenol ring) is treated as
QM and the other 50 as MM in the microsolvated calculations.
Geometries are reoptimized for each case. Notice that the lowest energy
conical intersection (“I-Twisted MECI”) becomes the minimum on S1

in the microsolvated case, leading one to expect faster nonradiative
decay in solution than in the gas phase.

TABLE 1: Comparison of the Relative Energies (in eV) of
the Two Lowest Singlet States of the Isolated and Solvated
GFP Chromophore at Its S0 and S1 Equilibrium Geometries
and at Two S0/S1 Minimal Energy Conical Intersectionsa

S0 eq (a) S1 eq (b)

S1 S0 S1

O-H stretch
MECI (c)

I-twist
MECI (e)

vacuum 3.58 1.62 2.75 4.15 4.03
2 wat. (2 QM) 3.54 1.66 2.62 4.06 3.97
2 wat. (1 QM 1 MM) 3.79 1.80 2.60 4.42 4.25
2 wat (2MM) 3.81 1.82 2.56 4.27
51 wat. (1 QM 50 MM) 3.52 1.96 1.96 4.11 1.96

a The zero of energy is chosen as S0 at the S0 equilibrium geometry.
Letters enclosed in parentheses refer to the corresponding geometries
depicted in Figure 6 of ref 49. Three different QM/MM decompositions
are compared for the case where the chromophore is surrounded by
only two water molecules.
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connecting the bridging carbon atom and the imidazolinone ring
(the “I-bond”). A minimal energy conical intersection (“I-twisted
MECI”) can be reached from the S1 minimum by pyramidal-
ization about one of the carbon atoms, but this is energetically
unfavorable. With the standard AM1 parameters, the energy cost
to reach this intersection is greater than 1 eV and, in fact, lies
above the Franck-Condon point. There is a MECI involving
extension of the phenolic O-H bond (“O-H stretch MECI”),
but this is also energetically inaccessible from the Franck-
Condon point. Ab initio calculations confirm this general picture,
although the conical intersections lie considerably lower than
found with FOMO-CI and AM1 parameters.62

Solvation induces a red-shift of the vertical excitation energy,
but this is quite small. Similarly, the O-H stretch MECI is
stabilized, but remains inaccessible from the Franck-Condon
region. On the other hand, there is a dramatic effect on the
I-twisted conical intersection, which is so strongly stabilized
that it becomes the minimum on S1. In other words, there is no
true minimum on S1 after solvation, but instead the absolute
minimum is a conical intersection. After photoexcitation to S1

in the gas phase, the molecule would be expected to move
toward the region of the PES around the equilibrium geometry
of S1 before reaching the I-twisted MECI. In solution, the same
I-twisted MECI becomes the S1 minimum and can be expected
to serve as a funnel for fast decay to the ground state. The
prediction is therefore a marked decrease in the excited state
lifetime going from the isolated chromophore to a solvated
environment. Indeed, a significant ultrafast component to the
decay of the GFP chromophore excited state has been observed
in solution studies.63

One might inquire into the cause of solvent stabilization of
the I-twisted MECI. Part of the answer may lie in the fact that
the I-twisted MECI involves considerably less pyramidalization
than in the gas phase. A more important observation concerns
the particular behavior of the dipole moment of the two
electronic states as a function of torsion about the I-bond. At
the S0 equilibrium geometry, the dipole moments of S0 and S1

are similar (≈2 D). However, at the S1 minimum, the dipole
moments are quite different, with≈1 D for S0 and≈10 D for
S1. Moreover, the direction of the dipole moment vector
indicates a clear intramolecular electron transfer across the
bridge from the phenol ring to the imidizalidinone ring. This is
further supported by Mulliken analysis, which shows 0.8
electron charge units transferred from the phenol ring and bridge
atoms to the imidizalidinone ring. Such charge separation is
obviously stabilized in a polar solvent like water, with the
consequence that the intersection arising from the interaction
of neutral-like and charge-transfer-like electronic states is also
strongly stabilized.

A second example is the chromophore of photoactive yellow
protein (PYP). This protein is the primary receptor for negative
phototaxis response inEctothiorodhospira haliphilia. It is a
small and soluble protein thought to be a useful model for
biological signal transduction.64 In the dark-adapted wild type
protein, the chromophore is found as an anion which is
protonated after photoexcitation. We study the neutral form of
the PYP chromophore here, which has been experimentally
studied in both gas65 and condensed66,67 phases. Again we
optimized the ground state and the first singlet excited of the
chromophore (where we have replaced the thioester by an ester
linkage) at different conformations and also at some conical
intersections. Figure 2 shows the conformations of the chro-
mophore which we will discuss. The QM treatment in this case
involved a CASCI with six electrons in six orbitals, i.e.,

FOMO-CASCI(6/6) with an energy width of 0.2 hartree for
the FOMO procedure. Again, one water molecule which is
H-bonded to the phenol is included in the QM region and the
MM region consists of 50 water molecules. The results of the
optimizations are reported in Table 2. In both the ground and
excited electronic states, the cis conformer is stabilized relative
to the trans conformer, which is a consequence of the larger
dipole moment in the cis conformer. Additionally, the S1

minimum of the trans conformer disappears in the solution
environment. The same behavior seen in the GFP chromophore
is repeated here; the MECI involving torsion (Figure 2f) is
dramatically stabilized and becomes the absolute minimum of
the excited state. The reason is again that this intersection results
from the interaction of charge-transfer-like and neutral-like
electronic states. In the isolated chromophore, the dipole moment
on S0 and S1 are the same (3.6 D) in the cis planar geometry,
whereas these change to 11.7 D for S1 and 3.9 D for S0 upon
twisting about the C-C double bond. Again, the intramolecular
charge-transfer involves removing an electron from the phenolic
ring.

It is interesting to note the similarities in the MECIs discussed
for GFP and PYP chromophores and those previously discussed
for ethylene. In the GFP chromophore, a carbon atom is
pyramidalized at the I-twisted MECI, analogous to the behavior
observed in the twisted/pyramidalized MECI of ethylene.68 In
the PYP chromophore, one of the hydrogen atoms in the central
moiety nearly forms a bridge to a second carbon atom, much
like that which is observed in the hydrogen migration intersec-
tion of ethylene.68 As one might expect, the motifs seen in the
conical intersections of small molecules tend to be repeated in
related, larger molecules.

Our final example is an analogue of retinal protonated Schiff
base (RPSB), which is the chromophore in the rhodopsin family
of proteins. We follow the same procedure as before, with the
chromophore defining the QM region and 57 water molecules

Figure 2. Photoactive yellow protein (PYP) chromophore equilibrium
geometries for S0 and S1 and the lowest energy S0/S1 conical
intersections. The S1 trans minimum exists in the isolated molecule
but not when solvated. Geometries e and f are distinct in the isolated
molecule, but the same when solvated. Some geometrical parameters
are given for the isolated and solvated (in square brackets) molecules.
See text for details.
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in the MM region. As a CASCI treatment of allπ electrons led
to an excessive number of configurations, we have limited the
CI to at most triple excitations from a Hartree-Fock-like
reference. All 10π electrons are included in the CI, and eight
orbitals have variable occupation in the CI; that is, the electronic
wave function is CISDT(10/8). The FOMO procedure is again
used, with an energy width of 0.15 hartree. The results for the
chromophore in vacuum and surrounded by 57 water molecules
are shown in Table 3. A pronounced blue shift of the vertical
excitation energy is observed and expected because the charged
nature of the chromophore will strongly orient the solvent to
preferentially stabilize the ground state. Once again, the stabili-
zation of a conical intersection such that it becomes an absolute
minimum is observed; the C13-C14 twisted MECI, which is not
even energetically accessible from the Franck-Condon point
in vacuum, becomes the global S1 minimum. The C11-C12 and
C9-C10 twisted MECIs are absolute minima already in the
isolated molecule, and this is not changed upon solvation.

Previous ab initio results suggest that the C11-C12 and C13-
C14 twisted MECIs are effectively degenerate for isolated
RPSB,69 which is in contrast to the vacuum FOMO semime-
pirical results in Table 3. This failure of the semiempirical
method has been pointed out in our previous work,49 and one
might expect the detailed branching of photoproducts to be
incorrectly predicted in solution without reparametrization.
However, we do not comment further on this issue because
dynamical simulations are required to determine the degree of
(dis)agreement with experimentally determined photoproduct
branching ratios.

2. Conical Intersection Topography with QM and QM/
MM Methods. The topography of the potential energy surface
around a conical intersection can have profound effects on the
efficiency of quenching through the intersection. Atchity and

Ruedenberg introduced a qualitative classification of the possible
topographies, noting that the ensuing dynamics could be quite
different in the various limiting cases.70 Subsequently, Yarkony
verified this effect for several model problems,71 and we have
shown that it provides a natural explanation for the observed
photoproduct yields in retinal protonated Schiff base.69 Because
the intended application of the methodology developed here is
in the context of nonadiabatic dynamics, e.g., photochemistry
in solution and protein environments, it is therefore of keen
interest to investigate the effect of the QM/MM approximation
on intersection topography in addition to energetics. This
includes both the nature of the molecular motions comprising
the branching plane (formed by thegb andhB vectors) and also
the form of the potential energy surfaces in this plane.

In the definition of the nonadiabatic coupling vector, we have
assumed that the coordinates of the solvent, or more precisely,
the MM atomic coordinates, do not affect the coupling between
two electronic states of the solute. Although it is physically
reasonable that the contribution of the solvent should in most
cases be quite small, this is not guaranteed and must be validated
directly. We have done this in the case of the GFP chromophore,
computing thegb and hB vectors for the same solvated system
with fully QM and QM/MM methods. Because the fully QM
optimization of a conical intersection can be computationally
challenging, we have reduced the number of solvating water
molecules to 27. We have then optimized an “I-twisted” MECI,
as described above, for the fully QM system. This geometry
was used as an initial guess for a similar MECI search in the
QM/MM method (where the chromophore and one water
molecule were treated with QM and the remaining 26 water
molecules were treated with an MM force field). The two
resulting geometries are compared in Figure 3 and are in quite
good overall agreement.

TABLE 2: Comparison of the Relative Energies (in eV) of the Two Lowest Singlet States of the Isolated and Solvated PYP
Chromophore at Its S0 and S1 Equilibrium Geometries and at Two S0/S1 Minimal Energy Conical Intersectionsa

S0 trans
eq (a)

S0 cis
eq (b)

S1 trans
eq (a)

S1 cis
eq (e)

S1 twist
eq (e)

S1 S0 S1 S0 S1 S0 S1 S0 S1

twisted
MECI (f)

O-H stretch
MECI (c)

vacuum 3.77 0.23 4.01 0.15 3.63 0.28 3.69 1.88 3.06 3.96 4.55
51 wat.

(1 QM 50 MM)
4.01 -0.18 3.62 not a minimum 0.03 3.43 2.05 2.05 2.05 4.90

a The zero of energy is chosen as S0 at the S0 trans equilibrium geometry. Letters enclosed in parentheses refer to the corresponding geometry
depicted in Figure 6.

TABLE 3: As in Table 2, but for Retinal Protonated Schiff Basea

S0 eq (a) S1 eq 13-14 twist (b)

S1 S0 S1

13-14 twisted
MECI (e)

11-12 twisted
MECI (c)

9-10 twisted
MECI (f)

nitrogen pyram.
MECI (d)

vacuum 2.22 0.90 1.79 2.24 1.31 1.63 2.11
57 wat. (57 MM ) 2.87 1.12 1.12 1.12 1.63 1.92 2.15

a Letters enclosed in parentheses refer to the corresponding geometry depicted in Figure 8 of ref 49.

Figure 3. Comparison of optimized minimal energy conical intersection between S0 and S1 for the GFP chromophore surrounded by 27 water
molecules using QM (blue) and QM/MM (red) methods. All but one of the water molecules are modeled with a MM force field in the QM/MM
treatment. The nonadiabatic coupling (hB) and gradient difference (gb) vectors are compared in the left and right panels, respectively.
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We also compare thegb andhB vectors at the optimized MECI
in the QM and QM/MM cases. Because of the degeneracy of
the two electronic states at a conical intersection, it is really
only the subspace spanned by these vectors as defined by eqs
12 and 13 that is relevant. There are several possible procedures
for standardizing the vectors such that a clear comparison can
be made.2,49,72 We follow our previous work and choose the
following procedure, which is guaranteed not to change the
branching plane and allows for a clear comparison of the
molecular motions involved in lifting the degeneracy around
the intersection. We orthogonalizehB to gb using a Gram-Schmidt
procedure. After obtaining an orthogonal pair of vectors in this
way for the QM case, the QM/MMgb andhB are rotated between
themselves to obtain maximal overlap between the QM and QM/
MM gb. The sign of the QM/MMhB is then chosen to agree with
the QM hB. The resulting standardizedgb and hB vectors are
compared for the QM and QM/MM cases in the right and left
panels of Figure 3, respectively. These are quite similar in the
QM and QM/MM cases. A quantitative measure of the agree-
ment is provided by the overlap between the corresponding QM
and QM/MM vectors, which is computed to be 0.99 and 0.96
for the nonadiabatic coupling and energy difference gradient,
respectively. The nonadiabatic coupling vector has no compo-
nent in the MM region by construction, but one can see from
the right panel of Figure 3 that the fully QM treatment also
predicts negligible components here. Although this is encourag-
ing, one should recognize that the particular QM/MM decom-
position chosen will affect the validity of the approximation
that the nonadiabatic coupling is nonzero only in the QM region.
This assumption should therefore be tested on a case-by-case
basis.

Given that the geometry of the MECI and the nature of the
branching plane have not been unduly affected by the QM/MM
approximation, it is now appropriate to ask about the topography
of the intersection. First, we compare the QM/MM and fully
QM results for the energetics relevant to photochemistry in a
small system: the GFP chromophore surrounded by two water
molecules. Figure 4 shows the energy landscape of the GFP
chromophore with two water molecules using both QM and QM/
MM approaches. In the QM/MM method, we treat one water
molecule (the one which is not H-bonded to the phenol) using

Figure 4. As in Figure 1, for the GFP chromophore solvated by two
water molecules. Results of the QM and QM/MM methods are
compared: red and blue indicate energies computed with QM or QM/
MM, respectively. Geometries are reoptimized for QM and QM/MM
methods.

Figure 5. Comparison of the potential energy surface in the immediate
neighborhood of a conical intersection using QM and QM/MM methods
for the GFP chromophore in the presence of two water molecules. The
potential energy surfaces are plotted in the “branching plane”, given
by the nonadiabatic coupling and gradient difference vectors. The
chromophore is treated with the QM method in all three calculations.
From top to bottom, the three panels depict calculations where both water
molecules are QM, the water molecule H-bonded to the chromophore
is QM, and both water molecules are treated with MM force fields.
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the MM method. One sees that the qualitative features of the
potential energy landscape are quite similar, although there are
of course differences in the details. The magnitude of these
differences can be seen clearly in Table 1, where the vertical
excitation energy, for example, is in error by less than 0.3 eV
comparing the different QM and QM/MM treatments.

Now, we can compare the topography around the I-twisted
intersection for all three QM/MM decompositions: zero, one,
or two water molecules included with the chromophore in the
QM region. We have optimized the intersection geometry and
computed the branching plane vectors separately for each of
these cases and then mapped the ground and excited state PES
in the branching plane around the intersection. The results are
shown in Figure 5, and one sees that the intersection is clearly
sloped in all cases. Thus, at least for this case, the topography
of the intersection is similar in the QM and QM/MM treatments.

The previous results seem to indicate that an MM representa-
tion of the solvent is a good approximation of the full QM
solute-solvent interaction in the case of a couple of water
molecules. It is also worthwhile to investigate a case with many
water molecules. Thus, we have optimized the same MECI in
the presence of one QM and 150 MM water molecules. In this
case, we are no longer able to do the fully QM calculation.
However, we can increase the size of the QM region. We do
this in two stages, first including eight water molecules which
are H-bonded to the solute, and finally including 51 water
molecules which comprise the first solvation shell. The intersec-
tion geometry is shown in Figure 6, where the GFP chromophore
appears in red, the H-bonded water molecules are gold,
additional water molecules in the first solvation shell are gray,
and the remaining water molecules which are always treated
with MM force fields are light black lines. For the model where
all but one of the water molecules are MM, we optimized the
MECI geometry and computed thegb andhB vectors. Then, we
computed cuts of the PES along thegb andhB vectors for each of
the three QM/MM decompositions. The results are shown in
Figure 7. As one might expect, the exact position of the conical
intersection does depend on the QM/MM decomposition; only
for the case where all water molecules are MM does one find

exact degeneracy at zero displacement in both panels of Figure
7. However, the curves are all qualitatively quite similar, and
the topography of the intersection is of the same sloped character
in all three cases.

IV. Conclusions

We have described in detail a QM/MM approach built on a
semiempirical methodology adapted to treat excited states: the
floating-occupation molecular orbital configuration interaction
(FOMO-CI) method. In previous work,49 we have investigated
the applicability of the FOMO-CI method to the problem of
determining conical intersection geometries, topographies, and
energetics in isolated molecules. Here, we have extended this

Figure 6. Depiction of a minimal energy “I-twisted” conical intersec-
tion of the GFP chromophore (red) solvated by one QM and 150 MM
water molecules. Water molecules which are considered H-bonded to
the chromophore are indicated in gold, and the first solvation shell is
comprised of the gray and gold water molecules.

Figure 7. Comparison of the ground and excited state potential energy
surfaces in the neighborhood of an “I-twisted” minimal energy conical
intersection for the GFP chromophore surrounded by 150 water
molecules. Cuts are along the gradient difference and nonadiabatic
coupling vectors as indicated. The geometry and branching plane vectors
are determined using a QM/MM method where all 150 water molecules
are treated as MM. The calculations are repeated at the same geometries
including H-bonded water molecules (8 water molecules, see Figure
6) or the entire first solvation shell (51 water molecules, see Figure 6)
in the QM region. As should be expected, the conical intersection
geometry clearly changes somewhat depending on the nature of the
QM/MM decomposition. However, these changes are not very large
in the present case.
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investigation to large systems microsolvated with up to 150
water molecules. With the QM/MM methodology, it is certainly
possible to treat much larger environments; in the calculations
presented here, the bottleneck is invariably the quantum
mechanical region. We have investigated the accuracy of the
QM/MM approximation in reproducing fully QM results for
quantities of interest in the photochemical context. The conclu-
sion is that this agreement is quite satisfactory, although this is
expected to depend somewhat on the particular QM/MM
decomposition chosen and should be tested in most cases. Future
improvements may include the incorporation of mutual polariza-
tion of the MM and QM regions,26,29-31,73-75 which could further
improve the accuracy of the QM/MM approximations.

The biologically relevant chromophores which we have
chosen in this study all involve cis-trans isomerization as one
of the possible photochemical reaction channels. Therefore, as
we have shown in previous work, the intersections of interest
are expected to arise from the interaction of electronic states
related by charge transfer.8,9,49,68,69,76Consequently, the primary
static effect of polar solvation in these molecules is to
preferentially stabilize one of these states, often resulting in cases
where the conical intersection becomes an absolute minimum
on the excited state potential energy surface. This behavior
accentuates the funnel-like character of the intersection and is
expected to lead to faster excited state decay in solution. This
can be expected to be a general effect in intersections arising
from electronic states related by charge transfer and is unlikely
to be restricted to photoisomerization, as shown schematically
in Figure 8. However, it is not a universal effect for all conical
intersections; for example, at the solvated O-H stretch MECI
in the GFP chromophore, both S0 and S1 are charge transfer
states of GFP--H3O+ type. Thus, both are stabilized by polar
solvation to approximately the same extent and the topography
of the intersection does not change significantly.

As we have pointed out earlier in our applications of the
semiempirical FOMO-CI method to isolated chromophores,
one should be cautious in applying the method with standard

parametrizations which are not designed for excited state
potential energy surfaces. Nevertheless, our previous investiga-
tions showed that many of the qualitative aspects of intersection
geometries and topographies are well-predicted using standard
parametrizations. Thus, we expect that our conclusions about
the static polar solvation effects on the photochemical energy
landscape in these molecules are generally valid. Ultimately,
the method is expected to be most promising in the context of
reparametrization for specific molecules. It can then be applied
to nonadiabatic dynamics in solution environments, and such
applications to solution photochemistry are currently in pro-
gress.
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